Home | About Us | Grants | Resources | News & Events | Community

Vision: We may not be there yet, but we are closer than we were yesterday.

detail
Home

About Us
arrowMission
arrowHistory & Background
arrowDisclaimer

Grants
arrowGrant Opportunities
arrowGrant Process
arrowASN Co-Grants
arrowAdvisors
arrow2015 Grant Recipient
arrow
2013 Grant Recipient
arrowTranslational Research

Resources
arrowPatient Registries
arrowPartners
arrowMedical Experts
arrowDefinitions
arrowBio Banks

News & Events
arrow2018 MN Conference in Bergamo
arrow
HFE Gene Linked to MN
arrowCureGN Study at Columbia
arrow
Protein Linked to Kidney Failure
arrowNIH Renews NEPTUNE Funding
arrow
Childhood Stress not trigger for MS
arrowLevin succeeds Remuzzi at ISN

arrowSalant receives Hamburger Award
arrowDrug for MS & Alzheimer's
arrowNeurons & Salt
arrowAutoimmune-Allergy Connection
arrowA Cause of Recurrent MN
arrowBlood Test Detects Kidney Rejection
arrow
Genotyping of Risk Alleles
arrowLink to Gene Variants

arrowBlood Test to Detect MN
arrowMN, an Autoimmune Disease
arrowKey Molecule Impacts Mice
arrowLa Jolla Institute
arrowGluten Specific T-cells
arrowHuman Gene Pool
arrowVitamin D & Clinical Outcomes
arrowBovine Serum Albumen
arrow
Variations in HLA-DQA1 & PLA2R1 regions
arrowKlotho and Kidney Disease
arrowLink between MN and Milk (NEJM)

arrowASN News Release
arrowMario Negri News Release

arrowHyper-IgG4 Syndrome News Release
arrowAdvances in Kidney Disease (RSS)
arrowKidney Disease News (RSS)
arrowNew Patents (RSS)
arrowScience Daily (RSS)
arrowUpcoming Events
arrowEvents Archive

Community
arrowLinks
arrowPublic Service Announcement
arrowOutreach










 

New Drug Target Identified for Multiple Sclerosis and Alzheimer's Disease

January, 30 2013 -- Researchers at Boston University School of Medicine (BUSM) led by Carmela Abraham, PhD, professor of biochemistry, along with Cidi Chen, PhD, and other collaborators, report that the protein Klotho plays an important role in the health of myelin, the insulating material allowing for the rapid communication between nerve cells. These findings, which appear online in Journal of Neuroscience, may lead to new therapies for multiple sclerosis (MS) and Alzheimer's disease (AD), in which white matter abnormalities are also common but have been largely ignored.

MS is an inflammatory disease which damages the fatty myelin sheaths around the axons of the brain and spinal cord. This destruction, loss or scarring of the sheaths results in a broad spectrum of symptoms. Disease onset usually occurs in young adults, most commonly women.

In MS the myelin is attacked by the immune system and may not be completely restored by myelin-producing cells (mature oligodendrocytes). The researchers discovered that the addition of Klotho protein to immature oligodendrocytes causes them to mature and manufacture proteins needed for the production of healthy myelin.

"These results taken together indicate that Klotho could become a drug target for multiple sclerosis and other white matter diseases, including AD," explained Abraham.

Abraham and her colleagues have identified, and are working on optimizing, a number of small molecules that could form the basis for the development of therapeutic drugs, which would increase the amount of Klotho protein in the brain.

Since Klotho is not only an age suppressor but also a tumor suppressor, as shown by other research groups, interventions with Klotho-enhancing drugs may solve some of the most treatment-resistant human ailments according to Abraham.

Klotho was named after the Greek Goddess and daughter of Zeus, who spins the thread of life. Abraham's lab was the first to publish (in 2008) that Klotho levels in the brain decrease with age.

Source: Science Daily